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Abstract

In the first half of these lectures we discuss mean value theorems for
functions representable by Dirichlet series and sketch several applica-
tions to the distribution of zeros of the Riemann zeta function. These
include the clustering of zeros about the critical line, Levinson’s result
that a third of the zeros are on the critical line, and a conditional result
on the number of simple zeros. The second half focuses on mean values
of Dirichlet polynomials, particularly “long” ones. We then show how
these can be used to investigate the pair correlation of the zeros of the
zeta function and to conjecture the sixth and eighth power moments of
the zeta function on the critical line.
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1 What is a Mean Value Theorem?

By a mean value theorem we mean an estimate for the average of a function.
When F (s) has a convergent Dirichlet series expansion in some half–plane
Re s > σ0 of the complex plane, we typically take the average over a vertical
segment: ∫ T

0
|F (σ + it)|2 dt or

∫ T

0
F (σ + it) dt .

The path of integration here need not lie in this half–plane. For example, we
would like to know the size of the integrals

Ik(σ, T ) =

∫ T

0
|ζ(σ + it)|2k dt ,

for σ ≥ 1/2 and k a positive integer. Here F (s) = ζ(s)k and its Dirichlet series
converges only for σ > 1.

There are many variations. For example, one can consider a discrete mean
value

R∑

r=1

|F (σr + itr)|2 ,

where the points σr + itr lie in C. Or, one can estimate the mean value of a
Dirichlet polynomial

F (s) = FN (s) =
N∑

n=1

ann
−s

of “length” N .

2 Mean Values and Zeros

Mean value estimates are very useful for studying the zeros of the zeta function;
this is one of the reasons so much effort has been expended on them. One
link between means and zeros can be seen in Jensen’s Formula from classical
function theory.

Theorem 2.1. (Jensen’s Formula) Let f(z) be analytic for |z| ≤ R and
suppose that f(0) $= 0. If r1, r2, . . . , rn are the moduli of all the zeros of f(z)
inside |z| ≤ R, then

log(
|f(0)|Rn

r1r2 · · · rn
) =

1

2π

∫ 2π

0
log |f(Reiθ)| dθ .

Here we see that the mean value of log |f(z)| around a circle is related to
the distribution of the zeros of f(z) inside that circle. There is an analogous
result for rectangles, which is often more useful when working with Dirichlet
series, namely,
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Theorem 2.2. (Littlewood’s Lemma) Let f(s) be analytic and nonzero on
the rectangle C with vertices σ0, σ1, σ1 + iT , and σ0 + iT , where σ0 < σ1. Then

2π
∑

ρ∈C

Dist(ρ) =

∫ T

0
log |f(σ0 + it)| dt −

∫ T

0
log |f(σ1 + it)| dt

+

∫ σ1

σ0

arg f(σ + iT ) dσ −
∫ σ1

σ0

arg f(σ) dσ ,

where the sum runs over the zeros ρ of f(s) in C and “Dist(ρ)” is the distance
from ρ to the left edge of the rectangle.

When we use Littlewood’s Lemma below, only the first term on the right–
hand side will be significant. In order not to be too technical, we will always
use the result in the form

2π
∑

ρ∈C

Dist(ρ) =

∫ T

0
log |f(σ0 + it)| dt + E ,

where E is an error term that can be ignored and might be different on different
occassions. The integral of the logarithm usually cannot be dealt with directly,
so we often use the following trick:

1

T

∫ T

0
log |f(σ + it)| dt =

1

2T

∫ T

0
log(|f(σ + it)|2) dt

≤ 1

2
log

( 1

T

∫ T

0
|f(σ + it)|2 dt

)
,

where the inequality follows from the arithmetic–geometric mean inequality.
In this way we see a direct connection between the location of the zeros within
a rectangle and the type of mean values we have been considering.

3 A Sample of Important Estimates

Let

Ik(σ, T ) =

∫ T

0
|ζ(σ + it)|2k dt .

When k = 1 we know that for each fixed σ > 1/2

I1(σ, T ) ∼ c(σ) T ,

as T → ∞, where c(σ) is a know function of σ. In 1918 Hardy and Little-
wood [HL] proved that when σ = 1/2,

I1(1/2, T ) ∼ T log T .
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What can such estimates tell us about the zeta function? Comparing the result
for σ greater than 1/2 with that for σ = 1/2, we see that the zeta function
tends to assume, on average, much larger values on the critical line than to the
right of it. Since it also has many zeros on the critical line, we should expect
the zeta function to behave rather erratically there.

The next higher moment was determined in 1926 by Ingham [I], who proved
that

I2(1/2, T ) ∼ T

2π2 log4 T .

Unfortunately, no asymptotic estimate has been proved for any k greater than
2. It is known that for positive rational k1,

Ik(1/2, T ) ) T logk2
T

(see Ramachandra [R] and Heath–Brown [H-B]). This is also known to hold
for all positive k if the Riemann Hypothesis is true (see Ramachandra [R]).
We expect that

Ik(1/2, T ) ∼ ckT logk2
T ,

but a proof seems a long way off. J. B. Conrey and A. Ghosh (unpublished)
suggested that

ck =
akgk

Γ(k2 + 1)
,

where

ak =
∏

p

((
1 − 1

p

)k2 ∞∑

r=0

d2
k(p

r)

pr

)

and gk is an integer. Only recently has anyone put forth a plausible value
for gk. J. B. Conrey and A. Ghosh [CG] conjectured that g3 = 42, and J. B.
Conrey and the author [CGO] conjecured that g4 = 24024. Then J. Keating
and N. Snaith [KS], using random matrix theory, conjectured a value for gk

for every complex number k with Re k > −1/2. For integer values of k, their
conjecture takes the form gk = (k2!)

∏k−1
j=0 j!/(j + k)! .

Another type of mean value important for applications is

∫ T

0
|ζ(j)(σ + it)MN (σ + it)|2 dt , (3.1)

where2

MN (s) =
∑

1≤n≤N

µ(n)

ns
P (

log n

log N
)

1Editors’ comment: See the Appendix of the lecture by D.W. Farmer, page 185, for a
discussion of the ) notation.

2Editors’ comment: The Möbius function, µ(n), is defined in the lectures of D.A. Gold-
ston, page 79, equation 2.10.
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and P (x) is a polynomial. Since

1

ζ(s)
=

∞∑

n=1

µ(n)

ns
(Re s > 1) ,

we can view MN (s) as an approximation to the reciprocal of ζ(s) in Re s > 1.
We might then expect the approximation to hold (in some sense) inside the
critical strip as well. If that is the case, multiplying the zeta function by
MN (s) should dampen (or mollify) the large values of zeta. Below we will
see two applications of this idea. The most general estimates known for such
integrals are due to Conrey, Ghosh, and the author [CGG2], who obtained
asymptotic estimates for them when the length of the Dirichlet polynomial
MN (s) is N = T θ with θ < 1/2. Later, Conrey [C] used Kloosterman sum
techniques to show that these formulas also hold when θ < 4/7.

We conclude this section by mentioning a few discrete mean value results.
The author [G] proved asymptotic estimates for the sums

∑

0≤γ≤T

|ζ(j)(ρ)|2,

assuming the Riemann Hypothesis is true. Here γ runs over the ordinates of
the zeros ρ = 1/2 + iγ of ζ(s). Conrey, Ghosh, and Gonek [CGG2] proved
discrete versions of the mollified mean values (3.1), namely

∑

0<γ<T

|ζ ′
(ρ)MN (ρ)|2 ,

under the assumption of the Riemann Hypothesis and the Generalized Lindelöf
Hypothesis.

4 Application: A Simple Zero–Density Esti-
mate

We want to show that there are relatively few zeros of the zeta function in the
right half of the critical strip. Let 1/2 < σ0 < 1 be a fixed real number and
let C be the rectangle in the complex plane with vertices at 2, 2 + iT , σ0 + iT ,
σ0. Applying our (simplified) version of Littlewood’s Lemma, we see that

∑

ρ∈C

Dist(ρ) =
1

2π

∫ T

0
log(|ζ(σ0 + it)|) dt + E ,

Where Dist(ρ) is the distance of the zero ρ = β + iγ of the zeta function from
the line Re s = σ0. Now let σ be a fixed real number with σ0 < σ < 1 and
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write N(σ, T ) for the number of zeros with σ < β ≤ 2 and 0 < γ < T . On the
one hand, we have

∑

ρ∈C

Dist(ρ) ≥
∑

ρ∈C
σ≤β

Dist(ρ) ≥ (σ − σ0)N(σ, T ).

On the other hand,

1

2π

∫ T

0
log(|ζ(σ0 + it)|) dt =

1

4π

∫ T

0
log(|ζ(σ0 + it)|2) dt

≤ T

4π
log(

1

T

∫ T

0
|ζ(σ0 + it)|2) dt

by the arithmetic–geometric mean inequality, as before. The integral on the
last line is Ik(σ0, T ), which we have seen is ∼ c(σ0)T , where c(σ0) is positive
and independent of T . Thus, the last expression is O(T ) . It follows that

N(σ, T ) * T .

Since N(T ) ∼ T
2π log T , we may interpret this as saying that the proportion of

zeros to the right of any line Re s = σ > 1/2 is infinitesimal.

This, the first zero–density estimate, was proved by H. Bohr and E. Lan-
dau [BL] in 1914. Since then there have been much stronger results, typically
of the form

N(σ, T ) * T λ(σ) ,

where λ(σ) < 1 for σ > 1/2. Nevertheless, the underlying idea in the proof of
many of these results already appears here.

5 Application: Levinson’s Method

Zero–density theorems tell us there are (relatively) few zeros to the right of
the critical line. Our goal here is to sketch the method of Levinson [L], which
shows that there are many zeros on it.

Recall that3

N(T ) = #{ρ = β + iγ | ζ(ρ) = 0, 0 < γ < T} ∼ T

2π
log T

and let
N0(T ) = # {ρ = 1/2 + iγ | ζ(ρ) = 0, 0 < γ < T}

denote the number of zeros on the critical line up to height T . The important
estimations of N0(T ) were:

3Editors’ comment: See Section 7 of the lectures by D.R. Heath-Brown starting on page
1.
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N0(T ) → ∞ G. H. Hardy (1914)
N0(T ) > cT G. H. Hardy-J. E. Littlewood (1921)
N0(T ) > c′N(T ) A. Selberg (1942)
N0(T ) > 1

3N(T ) N. Levinson (1974)
N0(T ) > 2

5N(T ) J. B. Conrey (1989)

Levinson’s method begins with the following fact first proved by Speiser [Sp].

Theorem 5.1. (Speiser) The Riemann Hypothesis is equivalent to the asser-
tion that ζ ′(s) does not vanish in the left half of the critical strip.

In the early seventies, N. Levinson and H. L. Montgomery [LM] proved a
quantitative version of this. Let

N ′
−(T ) = # {ρ′ = β′ + iγ′ | ζ ′(ρ′) = 0, −1 < β′ < 1/2, 0 < γ′ < T}

and

N−(T ) = # {ρ = β + iγ | ζ(ρ) = 0, −1 < β < 1/2, 0 < γ < T} .

Theorem 5.2. (Levinson-Montgomery) We have N−(T ) = N ′
−(T )+O(log T )

.

The idea behind the proof is as follows. Let 0 < a < 1/2 and let C denote
the positively oriented rectangle with vertices a + iT/2, a + iT , −1 + iT , and
−1 + iT/2 . It is not difficult to show that

∆ arg
ζ ′

ζ
(s)

∣∣∣∣
C

= O(log T ),

independently of a. Given this, we see that

2π(# zeros of ζ ′(s) in C − # zeros of ζ(s) in C) = O(log T ).

The theorem now follows on observing that a was arbitrary, and by “adding”
rectangles with top and bottom edges, respectively, at T and T/2, T/2 and
T/4, . . . .

We now sketch Levinson’s method. We have just seen that N−(T ) =
N ′

−(T ) + O(log T ). Now, the nontrivial zeros of ζ(s) are symmetric about
the critical line. Hence, the number of them lying to the right of the critical
line up to height T is also N−(T ). Therefore

N(T ) = N0(T ) + 2N−(T )

= N0(T ) + 2N ′
−(T ) + O(log T ),

or
N0(T ) = N(T ) − 2N ′

−(T ) + O(log T ).
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The size of the first term on the right–hand side of the last line is known,
namely, (1 + o(1)) T

2π log T . Hence, if we can determine a sufficiently small
upper bound for N ′

−(T ), we can deduce a lower bound for N0(T ).

To find such an upper bound it is convenient to first note that the zeros
of ζ ′(s) in the region −1 < σ < 1/2, 0 < t < T , are identical to the zeros
of ζ ′(1 − s) in the reflected region 1/2 < σ < 2, 0 < t < T . One can
also show, by the functional equation for the zeta function, that ζ ′(1− s) and
G(s) = ζ(s) + ζ ′(s)/L(s) have the same zeros in 1/2 < σ < 2, 0 < t < T ,
where L(s) is essentially 1

2π log T . It turns out to be technically advantageous
to count the zeros of G(s) rather than those of ζ ′(1 − s).

To bound the number of zeros of G(s) in this region, we apply Littlewood’s
Lemma. Let a = 1/2 − δ/ log T , with δ a small positive number, and let Ra

denote the rectangle whose vertices are at a, 2, 2+ iT , and a+ iT . It would be
natural to apply our abbreviated form of the lemma to obtain

∑

ρ∗∈Ra

Dist(ρ∗) =
1

2π

∫ T

0
log |G(a + it)|dt + E ,

where ρ∗ denotes a zero of G(s) and Dist(ρ∗) is its distance to the left edge of
Ra. However, in the next step, when we apply the arithmetic–geometric mean
inequality to the integral, we would lose too much. To avoid this loss, we first
mollify G(s) and then apply Littlewood’s Lemma in the form

∑

ρ∗∗∈Ra
GM (ρ∗∗)=0

Dist(ρ∗∗) =
1

2π

∫ T

0
log |G(a + it)M(a + it)|dt + E .

Here M(s) =
∑

n≤T θ an/ns, with an = µ(n)na−1/2
(
1 − log n

log T θ

)
and θ > 0,

approximates 1/ζ(s) . Note that among the zeros of G(s)M(s) in Ra are all
the zeros of G(s) in Ra. Therefore we have

∑

ρ∗∗∈Ra
GM (ρ∗∗)=0

Dist(ρ∗∗) ≥
∑

ρ∗∈Ra
G(ρ∗)=0

Dist(ρ∗)

≥
∑

ρ∗∈Ra ,Reρ∗>1/2
G(ρ∗)=0

Dist(ρ∗)

≥(1/2 − a)N ′
−(T ) .
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We now see that

(1/2 − a)N ′(T ) ≤ 1

2π

∫ T

0
log |GM(a + it)|dt + E

=
1

4π

∫ T

0
log |GM(a + it)|2dt + E

≤ T

4π
log

(
1

T

∫ T

0
|GM(a + it)|2dt

)
+ E .

Thus, we require an estimate for

∫ T

0
|GM(a + it)|2dt .

This is similar to a mean value we saw in Section 3. Levinson was able prove
an asymptotic estimate for this integral when θ = 1/2 − ε with ε arbitrarily
small. The resulting upper bound for N ′

−(T ) then led to the lower bound

N0(T ) > (1/3 + o(1))N(T ).

Conrey later proved an asymptotic estimate for the integral when θ = 4/7− ε.
This led to

N0(T ) > (2/5 + o(1))N(T ).

The form of the asymptotic estimate in both cases is the same as a function
of θ, and D. Farmer [F] has given heuristic arguments to suggest that this
remains the case even when θ is arbitrarily large. From Farmer’s conjecture it
follows that

N0(T ) ∼ N(T ) .

Before concluding this section, we remark that had we introduced a mollifier
into our proof of the Bohr–Landau result in the previous section, we would
have obtained a much stronger zero–density estimate of the form we alluded
to previously, namely N(σ, T ) * T λ(σ), with λ(σ) < 1.

6 Application: The Number of Simple Zeros

Our third application demonstrates the use of discrete mean value theorems.

Let

Ns(T ) = #{ρ = β + iγ | ζ(ρ) = 0, ζ ′(ρ) $= 0, 0 < γ < T}

denote the number of simple zeros of the zeta function in the critical strip with
ordinates between 0 and T . It is believed that all the nontrivial zeros are on
the critical line and simple, in other words, that N(T ) = N0(T ) = Ns(T ) for
every T > 0. Unconditionally, it is known that at least 2/5 of the zeros are
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simple (see Conrey [C]). In 1973, H. Montgomery [M], used his pair correlation
method to show that if the Riemann Hypothesis is true, then more than 2/3
of the zeros are simple. In other words,

Ns(T ) > 2/3N(T )

provided that T is sufficiently large. We will outline his argument in section 8.
Here we briefly describe a different method of Conrey, Ghosh, and Gonek
[CGG1], which shows that on the stronger hypotheses of RH and the Gener-
alized Lindelöf Hypothesis, one can replace the 2/3 above by 19/27 = .703 . . ..

By the Cauchy–Schwarz inequality, we have

∣∣∣
∑

0<γ<T

ζ
′
(1/2+iγ)MN (1/2+iγ)

∣∣∣
2
≤

( ∑

0<γ≤T

1/2+iγ is simple

1
)( ∑

0<γ<T

|ζ ′
(ρ)MN (ρ)|2

)
,

where MN (s) is a Dirichlet polynomial of length N with coefficients similar, but
not identical, to those of M(s) in the last section. Its purpose is also similar: to
mollify ζ

′
(1/2+ iγ) so as to minimize the loss in applyng the Cauchy–Schwarz

inequality. If one assumes RH, the sum on the left–hand side is easy to compute
and turns out to be ∼ 19/24N(T ) log T . The sum on the right–hand side is
much more difficult to treat, but one can show that if RH and GLH are true,
then it is ∼ 57/64N(T )log2T . Inserting these estimates into the inequality
above and solving for Ns(T ), we obtain the stated result. An elaboration of
the method leads to the conclusion that, on the same hypotheses, over 95.5%
of the zeros of ζ(s) are either simple or double.

7 Mean Values of Dirichlet Polynomials

From now on we will focus on mean values of Dirichlet polynomials. Let

A(s) = AN (s) =
N∑

n=1

ann
−s

be a Dirichlet polynomial of length N and let s = σ + it. The Classical Mean
Value Therorem for Dirichlet polynomials is

Theorem 7.1. (Classical Mean Value Theorem)

∫ T

0
|

N∑

n=1

ann
−s|2dt =

(
T + O(N log N)

) N∑

n=1

|an|2 n−2σ .

A more precise version due to H. L. Montgomery and R. C. Vaughan is
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Theorem 7.2. (Montgomery–Vaughan)

∫ T

0
|

N∑

n=1

ann
−s|2dt =

N∑

n=1

|an|2 n−2σ

(
T + O(n)

)
.

From this we see that if N = o(T ), then

∫ T

0
|

N∑

n=1

ann
−σ−it|2dt ∼ T

N∑

n=1

|an|2n−2σ .

On the other hand, if N ) T the O–term dominates and we have only

∫ T

0
|

N∑

n=1

ann
−σ−it|2dt * N

N∑

n=1

|an|2n−2σ .

It is natural to ask whether this is the actual size of the mean when N is
larger than T . The following example answers this question.

Example. Let each an = 1 and take σ = 1/2. Montgomery and Vaughan’s
mean value formula gives

∫ T

0
|

N∑

n=1

n− 1
2 −it|2dt =

N∑

n=1

1

n

(
T + O(n)

)

=T (log N + O(1)) + O(N)

=

{
(1 + o(1))T log N if N = O(T ) ,

O(N) if N > T α (α > 1) .

We can also evaluate this using a crude form of the approximate functional
equation for the zeta function (see Titchmarsh [T], p.77), namely

ζ(s) =
∑

1≤n≤N

n−s +
N 1−s

s − 1
+ O(N−σ) .

Taking σ = 1/2, we obtain

∫ T

0

∣∣∣∣
N∑

n=1

n−1/2−it

∣∣∣∣
2

dt =

∫ T

0

∣∣∣∣ζ(1/2 + it) +
N 1/2−it

1/2 − it
+ O(N−1/2)

∣∣∣∣
2

dt .

Now, we know (see Titchmarsh [T]) that

∫ T

0

∣∣ζ(1/2 + it)
∣∣2dt ∼ T log T .
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Furthermore, it is easy to see that

∫ T

0

∣∣∣∣
N 1/2−it

1/2 − it

∣∣∣∣
2

dt = N

∫ T

0

1

1/4 + t2
dt ∼ πN and

∫ T

0
N−1dt = T/N .

Hence, we find that
∫ T

0

∣∣
N∑

n=1

n−1/2−it
∣∣2dt ∼ πN

if N ) T α and α > 1. Therefore, the O– term cannot be reduced in this
case and, in fact, we can extract a new main term. So it makes sense to ask
whether there is a useful general asymptotic formula for

∫ T

0
|

N∑

n=1

ann
−s|2dt

when N = T α , α > 1. In order to answer this, let us consider the proof of
the Classical Mean Value Theorem. Squaring out and integrating, we obtain

∫ T

0

∣∣
N∑

n=1

ann
−σ−it

∣∣2dt =
N∑

n=1

N∑

m=1

anam

(nm)σ

∫ T

0
(m/n)it dt

=T
N∑

n=1

|an|2

n2σ
+

∑

1≤m,n≤N
m '=n

anam

(nm)σ

(
eiT log(m/n) − 1

i log(m/n)

)
.

The second sum consists of “off–diagonal” terms and is

*
∑

1≤m,n≤N
m '=n

|anam|
(nm)σ | log(m/n)| ≤

1

2

∑

1≤m,n≤N
m '=n

(
|an|2

n2σ
+

|am|2

m2σ

)
1

| log(m/n)|

=
∑

1≤m,n≤N
m '=n

|an|2

n2σ | log(m/n)| =
∑

1≤n≤N

|an|2

n2σ

( ∑

1≤m≤N
m '=n

1

| log(m/n)|

)
.

The inner sum is

*
( ∑

m≤N
|m−n|≤n/2

+
∑

m≤N
n/2<|m−n|

)
1

| log(m/n)|

*
∑

1≤h≤n/2

1

| log((n ± h)/n)| +
∑

m<n/2 or
3n/2<m≤N

1

| log(m/n)|

*
∑

1≤h≤N

n

h
+

∑

1≤m≤N

1 * N log N + N * N log N .
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Hence, the off–diagonal terms are

* N log N
∑

1≤n≤N

|an|2

n2σ
.

We therefore find that

∫ T

0

∣∣
N∑

n=1

ann
−σ−it

∣∣2dt =
(
T + O(N log N)

) N∑

n=1

|an|2
n2σ

.

From this it is clear that if we want a precise formula when N is much
larger than T , we need to estimate the off–diagonal terms more carefully.

Returning to our initial expression for these terms, we see that

∑

1≤m,n≤N
m '=n

anam

(nm)σ

(
eiT log(m/n) − 1

i log(m/n)

)

= 2Re
∑

1≤n<m≤N

anam

(nm)σ

(
eiT log(m/n) − 1

i log(m/n)

)

= 2Re
∑

1≤n<N

∑

1≤h≤N−n

anan+h

(n(n + h))σ

(
eiT log((n+h)/n) − 1

i log((n + h)/n)

)

= 2Re
∑

1≤h<N

∑

1≤n≤N−h

anan+h

n2σ
(1 + h/n)−σ

(
eiT log(1+h/n) − 1

i log(1 + h/n)

)
.

For the sake of simplicity, consider only the terms with h/n < 1/2. In these
log(1 + h/n) is approximately h/n and (1 + h/n)σ is approximately 1. These
terms therefore contribute about

2Re
∑

1≤h<N

∑

2h<n≤N−h

anan+h

n2σ−1

(
eiT h/n − 1

ih

)
.

To simplify further, we restrict our attention to the terms with Th < n/2. In
these (eiT h/n − 1)/ih is approximately T/n, so their contribution is about

2T Re
∑

h '=0

∑

n

anan+hn
−2σ .

We can clearly estimate this if we have good estimates for the sums

N∑

n=1

an an+h .

In fact, this would be sufficient to estimate the terms we ignored as well. To
state the final result obtained, we assume the an satisfy the following conditions
(see Goldston and Gonek [GG] for the details):
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1. (Normalization)

an * nε.

2. There is a function M(x) and a real number θ with 0 < θ < 1 such that

∑

n≤x

an = M(x) + O(xθ) ,

M ′(x) * xε, and M ′′(x) * x−1+ε.

3. There is a function M(x, h), real numbers φ and η with 0 < φ, η < 1,
such that

∑

n≤x

anan+h = M(x, h) + O(xφ)

uniformly for h ≤ xη , and M ′(x, h) * (hx)ε.

In applications it is often more convenient to estimate

∫ T

0

∣∣
N∑

n=1

ann
−s −

∫ N

1
M ′(x)x−sdx

∣∣2dt

rather than

∫ T

0

∣∣
N∑

n=1

ann
−s

∣∣2dt .

Here the integral involving M ′(x) may be thought of as an expected value.
Also, it is much easier to work with a weighted mean

∫ ∞

−∞
ΨU (

t

T
)
∣∣

N∑

n=1

ann
−s −

∫ N

1
M ′(x)x−sdx

∣∣2dt ,

where ΨU (x) is nonnegative, has support in [1−U−1, 1+U−1] with U = logA T ,

and satisfies Ψ(j)
U (x) * logj T and ΨU (x) = 1 in [1 + U−1, 1 − U−1]. It follows

that the Fourier transform Ψ̂U (v) is approximately 1 for |v| ≤ 1 and drops
off rapidly as |v| increases. Thus ΨU (t/T ) is a smooth approximation to the
characteristic function of the interval [0, T ]. Our result is

Theorem 7.3. (Goldston–Gonek) Let ε > 0 be arbitraily small, σ < 1, and
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θ,φ, η as above. Then for T * N * T (1−ε)/(1−η) we have

∫ ∞

−∞
Ψ(

t

T
)

∣∣∣∣
N∑

n=1

ann
−s −

∫ N

1
M ′(x)x−sdx

∣∣∣∣
2

dt

= Ψ̂(0)T
∑

n≤N

|an|2n−2σ

+ 4π(
T

2π
)2−2σRe

∫ ∞

T/2πN

( ∑

1≤h≤2πNv/T

M ′(
hT

2πv
, h)h1−2σ

)
Ψ̂(v)

v2−2σ
dv

− 4π(
T

2π
)2−2σRe

∫ ∞

T ε /2πN

( ∫ 2πNv/T

0

∣∣M ′(
uT

2πv
)
∣∣2u1−2σdu

)
Ψ̂(v)

v2−2σ
dv

+ O(N 1−2σ+max(θ,φ)+5ε) + O(N 2−2σ+5εT−1) + O(N 2ε) .

A similar formula can be proved for the tails of Dirichlet series minus their
expected value, that is, for

∑
n>N ann−s −

∫ ∞
N M ′(x)x−sdx . One can also

estimate the “mixed” means

∫ ∞

−∞
Ψ(

t

T
)

( N∑

n=1

ann
−s−

∫ N

1
M ′

a(x)x−sdx

)( N∑

n=1

bnn−s −
∫ N

1
M ′

b(x)x−sdx

)
dt ,

where M ′
a(x) and M ′

b(x) have an obvious meaning. Finally, one can show that
the integrals of “crossed” expressions consisting of a Dirichlet polynomial times
the complex conjugate of the tail of a Dirichlet series (minus their expected
values in both cases) are generally of smaller order than means involving a
polynomial times a polynomial or a tail times a tail.

We now turn to applications of long mean value theorems.

8 Application: A Lower Bound for F (α)

H. L. Montgomery [M] studied the function4

F (α) = (
T

2π
log T )−1

∑

0<γ ,γ ′≤T

T iα(γ−γ ′) 4

4 + (γ − γ′)2 .

It is known that F (α) is even and nonnegative, and Montgomery showed that
if the Riemann Hypothesis is true, then

F (α) = (1 + o(1))T−2α log T + α + o(1) (8.1)

for |α| ≤ 1. He also conjectured that

F (α) = (1 + o(1)) (8.2)

4Editors’ comment: The form factor, F (α), is also discussed in Sections 4 and 6 of the
lectures of D.A. Goldston, page 79.
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when 1 ≤ |α| ≤ A with A arbitrarily large. The only known nontrivial lower
bound for F (α) when |α| ≥ 1 is given by

Theorem 8.1. (Goldston–Gonek–Ozluk–Snyder) Assume the Generalized
Riemann Hypothesis. Then

F (α) ≥ 3/2 − |α|− ε

uniformly for 1 ≤ |α| ≤ 3/2 − 2ε and T ≥ T0(ε) .

See [GGOS].

Sketch of the proof. First we sketch the derivation of Montgomery’s results
(8.1) and (8.2).

We begin with the explicit formula

−2
∑

0<γ≤T

xi(γ−t) 1

1 + (t − γ)2 =x−1
( ∑

n≤x

Λ(n)n1/2−it −
∫ x

1
u1/2−itdu

)

+ x

( ∑

n>x

Λ(n)n−3/2−it −
∫ ∞

x

u−3/2−itdu

)
+ E ,

where E , as usual, denotes an ignorable error term. Integrating the modulus
squared of both sides (see Montgomery [M] for details), we see that the left–
hand side is

∫ T

0

∣∣∣∣2
∑

0<γ≤T

xi(γ−t) 1

1 + (t − γ)2

∣∣∣∣
2

dt = 2π
∑

0<γ ,γ ′≤T

xi(γ−γ ′) 4

4 + (γ − γ′)2 + E

= 2π F (x, T ) + E ,

where we write

F (x, T ) =
∑

0<γ ,γ ′≤T

xi(γ−γ ′) 4

4 + (γ − γ′)2 .

Note that

F (α) = (
T

2π
log T )−1F (T α, T ) .

Equating this with the mean squared modulus of the right–hand side, we find
that

2π F (x, T ) =

∫ T

0

∣∣∣∣x
−1

( ∑

n≤x

Λ(n)n
1
2 −it −

∫ x

1
u

1
2 −itdu

)

+ x

( ∑

n>x

Λ(n)n− 3
2 −it −

∫ ∞

x

u− 3
2 −itdu

)∣∣∣∣
2

dt + E .

(8.3)
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Case 1. x = T α , α < 1. Applying the Montgomery–Vaughan mean value
theorem in a straightforward way, we obtain (8.1).

Case 2. x = T α , 1 ≤ α < A. Applying Theorem 7.3 and a strong form of the
Twin Prime Conjecture, we obtain the conjecture 8.2. More precisely, if we
assume that ∑

n≤y

Λ(n)Λ(n + h)) = c(h)x + O(x1/2+ε) ,

where c(h) is defined in Theorem 8.2 below, we obtain 8.2 with A = 2. If we
also assume there is significant cancellation among the O–terms when averaged
over h, we obtain (8.2) with A arbitrarily large.

Theorem 8.1 is proved as follows. We have no proof of the Twin Prime
Conjecture, but we have its analogue for the functions

λQ(n) =
∑

q≤Q

µ2(q)

φ(q)

∑

d|q
d|n

dµ(d) ,

which approximate the Λ(n)’s. Let us rewrite (8.3) as

2π F (x, T ) =

∫ T

0

∣∣A(x, t) + A∗(x, t)
∣∣2dt + E .

Also, let AQ(x, t) and A∗
Q(x, t) be the same as A(x, t) and A∗(x, t), respectively,

but with the Λ(n)’s replaced by λQ(n)’s. Clearly we have

0 ≤
∫ ∞

−∞
ΨU (

t

T
)

∣∣∣∣
(
A(x, t) + A∗(x, t)

)
−

(
AQ(x, t) + A∗

Q(x, t)
)∣∣∣∣

2

dt .

It follows that

2Re

∫ ∞

−∞
ΨU (

t

T
)

(
AAQ + A∗A∗

Q + AA∗
Q + A∗AQ − AQA∗

Q

)
dt

−
∫ ∞

−∞
ΨU (

t

T
)
(
AQAQ + A∗

QA∗
Q

)
dt

≤
∫ ∞

−∞
ΨU (

t

T
)
∣∣(A(x, t) + A∗(x, t)

)∣∣2dt

= 2π F (x, T ) .

The coefficient correlation sums needed to estimate the long mean values here
are ∑

n≤y

Λ(n)λQ(n + h) for AAQ and A∗A∗
Q

and ∑

n≤y

λQ(n)λQ(n + h) for AQAQ and A∗
QA∗

Q .

These are available from
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Theorem 8.2. (J. Friedlander–D. Goldston) Assume the Generalized Rie-
mann Hypothesis. Let Q = yδ with 1/4 ≤ δ ≤ 1/2. Then

∑

n≤y

Λ(n)λQ(n + h) and
∑

n≤y

λQ(n)λQ(n + h)

are both = c(h)y + O(y
1
2 +δ+ε) uniformly for 1 ≤ h ≤ y1−ε, where

c(h) =





2
∏

p>2

(
1 − 1

(p−1)2

) ∏
p>2
p|h

(
p−1
p−2

)
if h is even ,

0 if h is odd .

Applying this to our terms, taking X = T α, and choosing δ optimally as a
function of α leads to

F (α, T ) ≥ 3

2
− |α|− ε

for 1 ≤ α ≤ 3/2 − 2ε.

9 Application: The 6th and 8th Power Mo-
ments of the Zeta Function

In Section 3 we defined

Ik(1/2, T ) =

∫ T

0
|ζ(1/2 + it)|2k dt

for positive values of k. Recall that Hardy and Littlewood showed that

∫ T

0
|ζ(1/2 + it)|2 dt ∼ T log T ,

Ingham showed that

∫ T

0
|ζ(1/2 + it)|4 dt ∼ 1

2π2 T log4 T ,

and no other asymptotic formula has ever been proved. In the mid 1990’s J.
B. Conrey and A. Ghosh [CG] made the following

Conjecture 1. (Conrey–Ghosh) As T → ∞,

∫ T

0
|ζ(1/2 + it)|6 dt ∼ 42

9!

∏

p

( ∞∑

r=0

d3(pr)2

pr

)
T log9 T ,

where d3(n) denotes the number of ways to write n as a product of three
positive integers.
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J. B. Conrey and I [CGO] followed this a few years later with

Conjecture 2. (Conrey–Gonek) As T → ∞,

∫ T

0
|ζ(1/2 + it)|8 dt ∼ 24024

16!

∏

p

( ∞∑

r=0

d4(pr)2

pr

)
T log16 T ,

where d4(n) is the four–fold divisor function.

All these results and conjectures relied on estimating mean values of Dirich-
let polynomial approximations to powers of the zeta function. It should be
mentioned that the Keating–Snaith [KS] conjecture previously refered to used
an entirely different method, namely, they modeled the zeta function by char-
acteristic polynomials of random unitary matrices.

Here we sketch our method for the 6th and 8th moment conjectures. It
gives the 2nd and 4th moment asymptotics as well. We begin with a discussion
of the approximate functional equation.

For s = σ + it and σ > 1, ζk(s) has the Dirichlet series expansion

ζk(s) =
∏

p

(
1 − p−s

)−k
=

∏

p

(
1 +

dk(p)

ps
+

dk(p2)

p2s
+ · · ·

)
=

∞∑

n=1

dk(n)

ns
,

where dk(pj) = (−1)j
(−k

j

)
is the kth divisor function. The series does not

converge when σ ≤ 1, but we can approximate ζk(s) in this region by an
expression of the form

ζ(s)k =
N∑

n=1

dk(n)

ns
+ χ(s)k

M∑

n=1

dk(n)

n1−s
+ Ek(s) ,

where Ek(s) denotes an error term. This is an approximate functional equation.
We write it as

ζ(s)k = Dk,N (s) + χ(s)kDk,M (1 − s) + Ek(s) ,

where

Dk,N (s) =
N∑

n=1

dk(n)

ns
,

MN =
(

t
2π

)k
, and χ(s) = πs−1/2Γ(1−s

2 )/Γ( s
2 ) is the factor from the functional

equation for the zeta function, ζ(s) = χ(s)ζ(1 − s) . Taking s = 1/2 + it, we
find that

ζ(1/2 + it)k = Dk,N (1/2 + it) + χ(1/2 + it)kDk,M (1/2 − it) + Ek(1/2 + it) .
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Assuming the error term is negligible, we obtain

∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
∫ 2T

T

|Dk,N (1/2 + it)|2 dt +

∫ 2T

T

|Dk,M (1/2 + it)|2 dt

+ 2Re

∫ 2T

T

χ(1/2 − it)kDk,N (1/2 + it)Dk,M (1/2 + it) dt .

There is reason to believe that the cross term is smaller than the main term
and that MN = (t/2π)k may be replaced by MN = (T/2π)k. Thus, we expect
that
∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
∫ 2T

T

|Dk,N (1/2 + it)|2 dt +

∫ 2T

T

|Dk,M (1/2 + it)|2 dt.

(9.1)
where MN = (T/2π)k and M,N ≥ 1. We can prove this when k = 1 or k = 2,
provided that M and N are both * T . When k ≥ 3, the known bounds for
Ek(s) are too large and it is difficult to show that the cross term really is small.
(However, it might be possible to overcome these problems by appealing to a
more complicated form of the approximate functional equation developed by
A. Good [GD].) Our problem now is to determine an asymptotic estimate for
the mean square of the Dirichlet polynomials Dk,N (1/2+it) and Dk,M (1/2+it).

Montgomery and Vaughan’s mean value theorem, Theorem 7.2, gives

∫ 2T

T

∣∣Dk,N (1/2 + it)
∣∣2 dt =

∑

n≤N

dk(n)2

n
(T + O(n)) .

By standard techniques one can show that

∑

n≤N

dk(n)2 ∼ ak

Γ(k2)
N logk2−1 N

and that ∑

n≤N

dk(n)2

n
∼ ak

Γ(k2 + 1)
logk2

N ,

where

ak =
∏

p

((
1 − 1

p

)k2 ∞∑

r=0

dk(pr)2

pr

)
.

Thus, for N * T , we deduce that

∫ 2T

T

|Dk,N (1/2 + it)|2 dt ∼ ak

Γ(k2 + 1)
T logk2

N .

Using this with M,N * T and MN = (T/2π)k, we obtain the classical
estimates for I1(T ) and I2(T ).
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If k ≥ 3, the condition MN = (T/2π)k forces at least one of M or N to be
) T , so we need Theorem 7.3, the mean value for long Dirichlet polynomials.
This requires good uniform estimates for the additive divisor sums

Dk(x, h) =
∑

n≤x

dk(n)dk(n + h) .

No such formula has been proved when k > 2, but a precise formula for the
main term of Dk(x, h) can be conjectured by a heuristic application of the
circle method. This leads us to guess that

Dk(x, h) = mk(x, h) + O(x1/2+ε)

uniformly for 1 ≤ h ≤ x1/2, where mk(x, h) is a certain smooth function of x.
Using this in Theorem 7.3, we obtain the

Conjecture 1. Let N = (T/2π)1+η with 0 ≤ η ≤ 1. Then

∫ 2T

T

|Dk,N (1/2 + it)|2 dt ∼ wk(η)
ak

Γ(k2 + 1)
TLk2

,

where ak is the product over primes defined previously and

wk(η) = (1 + η)k2

(
1 −

k2−1∑

n=0

(
k2

n + 1

)
γk(n)

(
1 − (1 + η)−(n+1))

)
,

with

γk(n) = (−1)n
k∑

i=0

k∑

j=0

(
k

i

)(
k

j

)(
n − 1

i − 1, j − 1, n − i − j + 1

)

when n ≥ 1 andγk(0) = k.

The conjecture restricts us to N * T 2 . Thus, M and N in (9.1) must
satisfy

M * T 2, N * T 2, and MN = (T/2π)k .

Writing N = (T/2π)1+η and M = (T/2π)k−1−η , we find that

∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
∫ 2T

T

|Dk,(T/2π)1+ η (1/2 + it)|2 dt

+

∫ 2T

T

|Dk,(T/2π)k−1−η (1/2 + it)|2 dt ,

with 0 ≤ η ≤ 1. Hence,

∫ 2T

T

|ζ(1/2 + it)|2k dt ∼
(
wk(η) + wk(k − 2 − η)

) ak

Γ(k2 + 1)
TLk2
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Example:The 6th moment. Take k = 3. Then

∫ 2T

T

|ζ(1/2 + it)|6 dt ∼
(
w3(η) + w3(1 − η)

) a3

Γ(10)
TL9

for 0 ≤ η ≤ 1. We find from the conjecture that

w3(η) = 1 + 9η + 36η2 + 84η3 + 126η4 − 630η5 + 588η6 + 180η7 − 9η8 + 2η9 ,

and one can verify that

w3(η) + w3(1 − η) = 42

for 0 ≤ η ≤ 1. Therefore

∫ 2T

T

|ζ(1/2 + it)|6 dt ∼ 42
a3

9!
TL9 .

Example:The 8th moment. Take k = 4. Then

∫ 2T

T

|ζ(1/2 + it)|8 dt ∼
(
w4(η) + w4(2 − η)

) a4

Γ(17)
TL16 ,

where η and 2 − η must be in [0, 1]. This forces η = 1. Now

w4(1) = 12012 .

Hence ∫ 2T

T

|ζ(1/2 + it)|8 dt ∼ 24024
a4

16!
TL16 .

Originally we thought we would be able to take N > T 2 in our formulas.
In other words, we expected the error terms in

Dk(x, h) = mk(x, h) + Oh(x
1/2+ε) ,

when used in conjunction with the long mean value theorem and averaged
over h up to x1−ε, would cancel. We were surprised to find, however, that they
accumulate once h exceeds x1/2−ε and contribute to the main term. It would
be very interesting to understand this behavior better.
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[H] G. H. Hardy, Sur les zéros de la fonction ζ(s) de Riemann, C. R. 158
(1914), 1012–1014.

[H-B] D. R. Heath–Brown, Fractional moments of the Riemann zeta–
function, J. London Math. Soc. (2) 24 (1981), 65–78.

[HL] G. H. Hardy and J. E. Littlewood, Contributions to the theory of the
Riemann zeta–function and the theory of the distribution of primes,
A. M. 41 (1918), 119–196.

[I] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-
function, Proc. London Math. Soc. (92) 27 (1926), 273–300.



224 S.M. Gonek

[KS] J.P. Keating and N.C. Snaith, Random matrix theory and ζ(1/2 + ıt),
Commun. Math. Phys. 214 (2000), 57–89.

[L] N. Levinson, More than one third of the zeros of Riemann’s zeta–
function are on σ = 1

2 , Adv. Math. 13 (1974), 383–436.

[LM] N. Levinson and H. L. Montgomery, Zeros of the derivative of the
Riemann zeta–function, Acta Math. 133 (1974), 49–65.

[M] H. L. Montgomery, The pair correlation of zeros of the zeta function,
in: Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, R.
I. (1973), 181–193.

[R] K. Ramachandra, Some remarks on the mean value of the Riemann
zeta–function and other Dirichlet series–III, Ann. Acad. Sci. Fenn.
Ser. AI Math. 5 (1980), 145–158.

[Sp] Speiser, Geometrisches zur Riemannschen Zetafunktion, M.A. 110
(1934), 514–521.

[T] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed.,
revised by D. R. Heath-Brown, Clarendon (Oxford), (1986).


